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Abstract. The old theories of localisation of Anderson and Abou-Chacra et a/ are re- 
examined. It is argued that ( a )  the convergence properties of the renormalised perturbation 
series for the self-energy are predominantly governed by its first term; and (b )  the locali- 
sation problem in a real lattice can be mapped on to the localisation problem in a Cayley tree 
lattice in which the non-contributing branches are trimmed off. The connectivity constant 
for the trimmed Cayley tree, which can be evaluated exactly, should be used in the Abou- 
Chacra et a1 method to obtain results for a real lattice. Calculations for two-dimensional 
lattices show partial agreement with the well known result that all states should be localised at 
any disorder-the triangular lattice (coordination number C = 6) appears to show complete 
localisation only above a critical value of disorder, the honeycomb lattice (C = 3) shows 
complete localisation always, and the square lattice (C = 4) is found to be the marginal case. 

1. Introduction 

Despite the phenomenal success of Anderson’s (1958) idea of electron localisation in a 
medium of random potential the embarrassing truth remains that both the old and the 
new theories (for a review see Lee and Ramakrishnan 1985) have by and large not been 
able to answer satisfactorily the simple questions such as where will the mobility edges 
be for a given system; what will be the critical amount of disorder, say W,, to cause the 
Anderson transition (Mott and Davis 1979), etc, even for simple model systems. The 
only saviours have been the numerical simulations of Licciardello and Thouless (1978), 
Weaire and Srivastava (1977), and many others including recent ones like Elyutin ef al 
(1984) and Schreiber (1987). In order to find quantitative answers to such questions for 
realistic systems if we scrutinise the available theories we find that Anderson’s original 
theory (Anderson 1958) and the self-consistent theory of Abou-Chacra et a1 (1973) are 
still the most rigorous although their estimates are too high compared with the simulation 
results. The reason for the disagreement, we suggest, is that the connectivity constants 
for the realistic systems used in the analytical theories (Anderson 1958, Abou-Chacra 
et a1 1973, hereafter called AAT) were much too high. 

We have re-examined the Anderson-Thouless theories and have obtained an exact 
method for calculating the connectivity constant for the hierarchy of closed self-avoiding 
random walks (SAWS) that are pertinent to the localisation problems in a given lattice. 
0 Permanent address. 
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This enables us to handle the localisation problems in real systems almost exactly within 
the Anderson’s tight-binding model (Anderson 1958). 

Anderson (1958) and AAT (1973) studied the convergence of a renormalised per- 
turbation series (RPS) for self-energy Si on site i ,  

where gil,. . , ,m = (2 - e, - ~ ; j , . . . m ) - l  is the Green function; e, is the site energy on site 
n and is distributed randomly over the lattice sites; V,, is the transfer integral between 
the nearest-neighbour sites n and m and takes a fixed non-random value, say V; the 
superscripts denote the sites excluded once they are traversed in the course of a random 
walk, so only the SAWS contribute to (1). For the localised states the RPS (1) converges 
and is defined term by term. Since for the localised states Im Si + 0 as Im 2 - 0  such 
that Im S,/Im 2 remains finite for Im 2+ 0, the RPS for Re Si and for Im Si/Im 2 should 
converge simultaneously (Im and Re represent the imaginary and real parts respect- 
ively). More explicitly, writing Si = Ri + iAi and 2 = E If: is, we demand that 

and 

(2b)  

should converge at the same time. The perturbation theory is done for large disorder W 
(measured as the width of the distribution function for e,), where W 9 V. 

Assuming that (i) the probability distribution of individual terms of the RPS has a 
large tail, (ii) all denominators <4V2/W should be ignored for E = 0, and (iii) each of 
the K” paths of n steps ( K  being the connectivity constant for the lattice) from a point 
makes a contribution that is statistically independent of the contributions from the 
others, Anderson gave the following condition for the localisation of the band centre, 

W > 4KVln(W/2V). (3) 

Surprisingly, AAT (1973) found exactly the same condition (3) in a self-consistent 
treatment of localisation (at the band centre). Their treatment is exact for a Cayley tree 
(CT) of connectivity K and involves only the two-step diagrams in (2), which amounts to 
ignoring all the terms except the first one in (2a and b) .  We focus our attention on this 
coincidence to examine the significance of the statistical independence (or otherwise) 
of SAWS in arriving at condition (3). 

In Q 2 we discuss the question of statistical independence and, having settled it, we 
enquire in 9 3 why the Anderson-Thouless-type approaches do not yield results in 
agreement with the numerical results. The answer, it is argued, is related to the ‘proper’ 
connectivity constant that should be used in the Anderson-Thouless approaches. The 
quest for this leads us to the construction of a trimmed CT exactly equivalent to a given 
real lattice for the purposes of localisation studies. This is done in Q 4. Localisation in 
the trimmed CT is studied in Q 5 and a surprising finding is discussed in 9 6 .  



Solving certain localisation problems 4313 

2. The question of statistical independence of SAWS 

While Anderson’s assumptions (i) and (ii) are generally believed to be reasonable, 
assumption (iii) has been criticised (Thouless 1970, Economou and Cohen 1972) and it 
is often felt that this makes his treatment equivalent to that of a CT. The basis of the 
criticism has been that different SAWS in a real lattice have many sites in common and 
therefore should not be treated as statistically independent. This is perfectly valid, but 
we argue that this is not the reason that makes Anderson’s treatment equivalent to that 
of the CT, for in the CT too the SAWS have sites in common. 

In a CT the number of new options for the next step after the nth step is K“, and they 
are all treated as independent of each other; this is also true in a real lattice where all 
the new steps are, quite justifiably, independent of each other. Thus, so far as the 
statistics of new steps at a given stage of a SAW is concerned, both the CT and the real 
lattices behave similarly; also the n-step SAWS are not statistically independent of each 
other in either the CT or the real lattices. Despite these similarities in behaviour, the 
SAWS in the two types of lattices are intrinsically different in that the real lattices have n- 
step closed SAWS (i.e., those that interest us in connection with the RPS (1)) and the CT 
has two-step open SAWS of length n;  in real lattices only the first term of the RPS has two- 
step SAWS. With this distinction emphasised, it is easy to appreciate the coincidence 
pertaining to condition (3)-while Anderson investigates the contributions from the 
higher terms in (2) within the approximation scheme (i)-(iii) , in the CT approximation 
of AAT all the higher terms are completely ignored and one concentrates only on the first 
term in (2). Yet the end result, namely condition (3), is the same. 

It is hard to expect that as a consequence of the ‘statistical independence’ all the 
higher terms in (2) cancel each other leaving the non-zero contribution to come from 
the first term alone and thus reducing the problem to become exactly equivalent to the 
localisation in the CT. The only plausible explanation seems to be that the question of 
statistical dependence or otherwise of the terms within the square brackets in the series 
(2) is not important and that the dominant contribution comes from the first term alone. 
Thus, only the two-step SAWS of the first term govern the convergence or divergence of 
the infinite series (2). 

This is also indirectly indicated by the fact that localisation in a CT is more difficult 
than in a real lattice of the same K because a CT has many more avenues to let an electron 
diffuse away. Thus, if an eigenstate is localised on a CT, a state of the same energy is 
expected to be localised in the real lattice of the same K .  While in understanding this 
argument one should be a little cautious and bear in mind that a CT of connectivity K is 
not exactly represented by the first term of the RPS for a real lattice of coordination 
number C (= K + 1). The first term of the RPS represents a tree structure of connectivity 
less than K.  However, since its branches are non-intersecting it also offers more avenues 
to diffuse away than those existing in the real lattice represented by the full RPS. 

So, in principle, it seems it should be sufficient to concentrate on the first term of the 
RPS and the convergence properties of the continued fraction in it to study the localisation 
in a real lattice. Since the first term can be studied exactly as was done by AAT, the results 
should be more or less exact for the real lattice. But we know that this is not the case and 
that the results obtained by Anderson (1958) as well as those by AATfor W, are nowhere 
near the numerical estimates. The answer to this anomaly can be that the connectivity 
constants used in both these calculations were not the right ones and were always too 
high, 
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Figure 1. Sequences of steps taken in self-avoiding manner on a square lattice: solid lines 
show the paths chosen by the walker and the broken lines show the possibilities available for 
the next step. The numbers denote the branch indices: the possibilities for the walker to step 
to the right, straight ahead or left are indicated by 1, 2 and 3, respectively. Any direction 
could be chosen for the first step off the origin. Suppose he chooses to go to site 1, paths in 
all other three directions evolve in identical fashion. All possible SAWS shown on the left 
have been put together in the form of non-intersecting branches emanating from the origin. 
Note that the points on the resulting Cayley tree (@ and 0) denote the stages at which 
branches are missing respectively due to the origin and the site next to it popping up on the 
way. The procedure can be continued indefinitely. The result will be an infinite Cayley tree 
with many missing branches. 

3. Proper connectivity constant 

The connectivity constant for a given lattice is calculated from 

K = exp[ lim (In S,)/n] (4) 
n-+ 33 

where S, is the number of SAWS of n steps in the lattice. The value of K is always less than 
K = C - 1, where Cis  the coordination number for the lattice. The calculations using K 
in place of K have yielded better results (e.g., Brouers and Kumar 1975), but we show 
that it is not good enough (in fact it is even wrong) to replace Kin the CT calculation with 
K. The CT that actually corresponds to a given real lattice for localisation studies is in 
fact a section of the CT of non-integral connectivity K-we will call it a trimmed Cayley 
tree (T-CT) of connectivity constant k(k < K < K ) ,  which we will determine exactly in 
the following. 

First let us construct the CT of connectivity K corresponding to a given real lattice 
and compare it with a full CT of connectivity K.  Then we can easily work out which 
section of the K CT actually interests us. 

The process of constructing the K CT corresponding to a square lattice is shown in 
figure 1. Starting from an arbitrary origin a random walker can take the first step in four 
possible directions. These form the first four branches of the desired CT. In whatever 
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direction the random walker goes it will have three possible directions in which to take 
the next step, so we add three branches to each of the first four branches. On the tip of 
each of these two-step SAWS we examine the number of new steps that can be taken such 
that the walker does not step on any of the previous two sites it has traversed. These new 
possibilities are added as new branches. Progressing in this manner, at an arbitrary stage 
n we look at the tip of each of the n-step SAWS individually and independently of each 
other, and count the number of new steps that can be taken without leading to any of 
the previous n sites already covered in that particular SAW. These possible new steps are 
added at the top as new branches. Monitoring the branching and progress of each SAW 
we construct a tree of all possible SAWS that can be performed on a real lattice. This will 
be a cr embedded in an infinite-dimensional space, but note that compared with a full 
CT that has the same number of branches (i.e., C - 1) at each joint, this CT has far fewer 
branches; many branches go missing (in a seemingly random manner) because of the 
self-avoiding nature of the random walk on the lattice. From an arbitrary site on a SAW 
the number of new options to step forward can range from0 to (C - 1). In the asymptotic 
limit, n+ 00, if we calculate the connectivity constant for this CT we will simply get the 
result K according to 

K = number of new sites to which a given site is connected 

= lim Sn+l/Sn 
= exp[ lim (In s,)/n]. 

n+ = 

Even the K CT has many more branches than those of interest to us, as we show in 9 4. 

4. The trimmed Cayley tree 

In a given real lattice the SAWS that contribute to the RPS (1) or (2) constitute a hierarchy. 
Each term of the RPS is represented by a set of SAWS of fixed length that originate and 
terminate at the arbitrary origin. For convenience call them SAWS(~) .  Since each term 
can also be expanded as a continued fraction, we find that after the first iteration of the 
expansion process the denominator consists of all the SAWS that originate and terminate 
on the sites traversed by the SAWS('). Call them SAWS(~) .  At the next iteration stage the 
denominators consist of all the SAWS originating and terminating at the sites covered by 
the SAWS(~) .  Thus we find that the RPS is actually represented by a whole hierarchy of the 
SAWS as is also illustrated by a diagram by Srivastava and Chaturvedi (1982). 

The above hierarchy of closed SAWS for a given real lattice will be represented in the 
K CT by those branches that are able to reach up to a point (or joint) in the tree where 
the connectivity is less than K(= C - l), but are unable to grow further. Take, for 
example, C = 4 (Le., K = 3), then at a joint n steps away from the origin, suppose the 
new step can be taken only in one of the three directions and the remaining two directions 
are blocked because they lead to the sites already traversed. At this joint, these two 
blocked (n  + 1)-step SAWS are actually of interest to us. Some of the missing branches 
of this type at stage n are shown schematically in figure 2 as dotted lines. We can isolate 
two kinds of joints at stage n: ( a )  where the connectivity to the (n  + 1)th stage is K ,  and 
(b)  where it is <K, say, K ' .  Out of a total number, S,, of SAWS reaching up to stage n,  
M ,  lead to joints of type (b) .  In the limit n + we are interested in the connectivity, k, 
of the dotted lines, which may be viewed as 'stumps' of the missing branches sticking 



4316 

nth step 

Figure 2. Schematic representation of the nth stage of a CT with K = 3. The solid dots 
represent sites with connectivity K and those with connectivity K '  (<K) are shown by circles. 
Of the total number S, of the sites, M, are circles. 

out of the M ,  sites. It is straightforward to write the following relation between S,, M,, 
K and K ' ,  

K(S ,  - M,) + K ' M ,  = S n + l .  (5) 

Using the fact that S,,,/S, = K ,  we obtain K' as 

K' = K - ( K  - K)S,/M,. (6) 

Then k is given by 

k =  K -  K ' .  (6') 

Thus, if for a given real lattice we can enumerate S, and M ,  for sufficiently large n ,  then 
we can calculate k for the T-CT which, as we have argued above, corresponds to the real 
lattice, so far as the one-to-one correspondence between the branches of the T-CT and 
the ciosed SAWS in the real lattice is concerned. For a given real lattice, this is the k we 
should use in the exact localisation treatment of AAT and obtain almost exact localisation 
results for the real lattice. 

We have calculated k for three two-dimensional lattices, namely, triangular, square 
and honeycomb using the S,, M ,  data provided by P Grassberger. Table 1 lists S,, 
ML (number of walks with i possibilities for the next step) and 

for the square lattice. The values given are only for a few short walks to help the reader 
understand the definitions of S, and M,. The S, and M ,  were enumerated for sufficiently 
long walks. The maximum number of steps was n = 30 for the honeycomb, n = 18 for 
the square and n = 15 for the triangular lattice for which S,/C was extremely large- 
62 166075,31164683 and 963627597, respectively. These numbers are high enough for 
very good statistics, e.g. ,  the variation in S,/M,, the quantity of interest in equation (6), 
becomes smooth with respect to n well before the highest value of n given above. This 
enabled us to extrapolate easily the asymptotic value of S,/M, for n + CQ. The values of 
K ,  K and k are compared for these lattices in table 2. 
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Table 1. For a square lattice (C = 4; K = 3) are listed a sample of values of total number of 
SAWS of n steps as well as the groups of these SAWS that after the nth step have i possibilities 
available for taking the next step. The numbers pertain to only one of the four directions 
from the origin, so the S,, M ;  and M ,  will be four times the above numbers. Note that 
S, = Z,"=l M n ,  where i is the connectivity on M ;  points n steps away from the origin. For 
actual calculations of S,/M,, these numbers were calculated for n up to 18, 15 and 30 for 
square, triangular and honeycomb lattices, respectively. 

n S,/C i = O  i =  1 i = 2  i = 3  M , / C = Z f Z , " M L / C  

2 3 0  0 0 3 0  
3 9 0  0 2 7 2  
4 25 0 0 4 21 4 
5 71 0 2 14 55 16 
6 195 0 4 34 157 38 
7 543 2 18 108 415 128 
8 1479 4 42 274 1159 320 

Table 2. Comparison of the connectivity constant k for a trimmed Cayley tree corresponding 
to three two-dimensional lattices, with the conventional connectivity constant K associated 
with these lattices (obtained by counting the SAWS), and K which is simply C - 1 (C = 
coordination number). 

Lattice type P Kb K C 

Honeycomb 1.191 1.848 2 3 
Square 1.354 2.639 3 4 
Triangular 1.689 4.151 5 6 

a Equation (6'); the maximum value of n was 30 for the honeycomb, 18 for the square and 
15 for the triangular lattice. 

Equation (4). 

We used Newton's 'divided-difference' method (see, e.g., Zurmiihl 1976) to do a 
stepwise extrapolation. For example, for a triangularlattice first we fitted the following 
fifth-order polynomial over the six S,/Mn points corresponding to n = 10-15: 

f(n)=ao+(n-,lO)a, +( n-10)(n- l l )a2+ ... -k(n-lO)(n-11) ...( n-14)a5 

then calculatedf(l6) from this and used this new point to enlarge the polynomial to sixth 
order, then calculated f(17) from this and enlarged the polynomial to seventh order, 
and so on. The advantage of this method is that each time a new point becomes available 
to enlarge the polynomial, only one extra coefficient, say ai, needs to be calculated 
leaving all previous (ao, . . . , coefficients unchanged. This process was continued 
until two successive values of S,/M, became very close to each other. Even after that we 
took a conservative estimate for the asymptotic value of S, /M,  (see figure 3) to avoid 
the possibility of the above extrapolation procedure overestimating it. However, we 
may add that there is hardly a scope for the latter to happen because the error in the 
divided-difference method is known to decrease rapidly as the order of the polynomial 
increases. In the present case it becomes infinitesimal forf(n) of the order of five or so. 
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Figure 3. S,/M, versus n for the triangular lattice. The crosses represent the points obtained 
by a stepwise extrapolation. The curve has been drawn to guide the eye. 

We mention in passing the following interesting identity observed by us, 

where Bn represents the number of blocked steps at the stage n and the M ;  represent 
the number of sites with i possibilities to step further; A is an exponent that depends on 
the lattice dimensionality only (Srivastava 1984). 

5. Localisation in the T-CT 

We have understood that the convergence of the RPS (1 or 2) is predominantly governed 
by the two-step SAWS V,lV,,, VlkVkl, . . . , that appear in the respective first terms of the 
RPSS for S , ,  S), Ski, etc. If we ignore all the higher terms and retain only the first one in 
S,, Sf ,  etc., and if for each this term consists of K steps (corresponding to the K = C - 1 
neighbours in the 'forward' direction), then a continued fraction consisting of S,, Sf etc., 
will represent a CT of connectivity K.  However, as we have seen in previous sections, if 
we look at a SAW performed on a real lattice then at an arbitrary stage m the number of 
steps, V,,V,,, is constrained by the requirement that n # i, j ,  . . . m where i, j ,  k ,  . . . , 
are the sites covered by the SAW before reaching site m. The number of steps from m can 
be anywhere between 0 and K .  Further, we have seen that it is not the number of steps 
taken from the site m that interest us, but rather it is the number of blocked steps, which 
can not be taken from m. A T-CT consisting of such branches is the one that we will use 
for the localisation studies of the real lattice under consideration. 

The continued fraction representing this T-CT has been found by Srivastava and 
Chaturvedi (1982) by rewriting the whole (convergent) RPS in the form of a single 
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continued fraction with the contribution of each SAW in the hierarchy properly fed into 
the denominators of the continued fraction of the first term. The continued fraction 
derived there was the representation for the T-CT constructed here. The study of the 
convergence properties of this continued fraction showed that the convergence of the 
RPS G the convergence of the ‘renormalised’ continued fraction (representing the T-CT). 
Thus, an eigenstate having a localised wavefunction on the T-CT will also be localised in 
the real lattice. The nature of distribution of eigenenergies in the tree lattices is quite 
different from that of the real lattices; in particular, the former have smaller band widths. 
So a localised state in a real lattice will correspond either to a localised state in the 
corresponding T-CT or to an energy outside the T-CT band states. In any case, the mobility 
edge E, will appear at the same energy in both the lattices if the energy scales of the two 
are taken to be the same with the zeros coincidental. 

Since the density of states in a real lattice and that in the corresponding T-CT are 
different, the calculation of the localisation length will yield different results for the two. 
In fact, due to the non-intersecting branches in a CT the shape of a wavefunction spread 
over it is very different from that in a real lattice-it has a highly ramified octopus- 
like shape and the localisation length is a measure of the distance penetrated by the 
wavefunction along a branch. However, since E, occurs at the same energy in the two, 
the E, versus W trajectories and the W, are the same for the two lattices. 

Thus, after k has been calculated from relation (6’) for a T-CT corresponding to a 
given real lattice (represented in (6’) by K = C - 1, K ,  S, and M , ) ,  all we need to do is 
to use the exact formulation of AAT (1973) and Abou-Chacra and Thouless (1974) to 
solve the localisation problem; for instance, obtain W, from condition (3) and E,-W 
trajectories from the relations given in AAT ($7) for different types of distributions 
for site energies ei. These results will be the nearly exact results for the real lattice. 
As an example we compute W, for the two-dimensional lattices for which we have 
calculated k .  

6. Ambiguity of two dimensions 

We have chosen two-dimensional lattices for our computations because (a) S, and M a  
can be enumerated for larger values of n than for the three-dimensional lattices, and ( b )  
two-dimensional systems are of particular interest in view of the prediction of Abrahams 
et a1 (1979) that complete localisation will occur even at infinitesimal disorder. Our 
results are quite interesting with an element of surprise as discussed below. 

The critical value of disorder W, at which the Anderson transition takes place 
(i.e., when the whole band consists of localised eigenstates) is given for a rectangular 
distribution of random site energies, from (3) as, 

W ,  = 4KV1n(Wc/2V). (3’) 

As stated earlier this result comes from Anderson’s (1958) theory for a real lattice of 
connectivity K as well as from the exact treatment of AAT (1973) for a CT of connectivity 
K.  Having argued that for the calculation of W, and W,-E trajectories we can treat 
a T-CT of connectivity k as exactly equivalent to  a real lattice of connectivity K (or 
coordination number C), we can respectively use (3’) for the band centre, and W, = 
2KV ln[(W:/4 - E 2 ) / V 2 ]  for other values of E [the same as equation (7.8) of AAT 
(1973)l to obtain the exact results for a real lattice. We solved (3‘) for a series of values 
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Figure 4. W, versus K obtained by solving equation (3’) for the band centre and for a series 
of CT connectivity Kvalues. The solutions shown by the bold line are the relevant ones. The 
arrows t on the K axis indicate k values for the two-dimensional lattices studied. The dots 
on the bold line denote values of W, for honeycomb (HC) and square (SQ) lattices with K = 
2 and 3, respectively; the value corresponding to the triangular (TR) lattice is outside the 
range of the diagram. The cross shows the value of W,  for a triangular lattice corresponding 
to k .  

of K and the results are shown in figure 4. For each K there are two solutions for W,, 
but only the larger solution is of interest (D J Thouless, private communication). At 
K = K, = 1.36 both solutions merge and no solution exists for K < K,. The meaning of 
the non-existence of a solution for K < K, is, according to AAT, that the localised state 
at the band centre is always stable even for infinitesimal W .  Therefore, for a real lattice 
if the value of k falls below K,  all states will be localised for any amount of disorder. We 
find that for the honeycomb lattice k (= 1.19) is clearly below K,, for the square lattice 
k (= 1.35) is very close to K,, and for the triangular lattice k (= 1.69) is sufficiently above 
K,. This implies that the Abrahams etaZ(l979) contention holds for the honeycomb and 
the square lattices with the square lattice being the marginal case; however, the triangular 
lattice does have the mobility edges. 

The case of square lattice is particularly interesting and requires special mention 
because there are several estimates of W, available for it. The value of W,/V (with V = 
1) expected from the present calculation (from figure 4) is very close to 6, which should 
be compared with the previous numerical and analytical estimates listed below: 

Numerical estimate of Licciardello and Thouless (1975) 
Numerical estimate of Weaire and Srivastava (1977) 
Numerical estimate of Stein and Krey (1980) 
Analytical estimate of Anderson (1958) 
Analytical estimate of Economou and Cohen (1972) 

Analytical estimate of Licciardello and Economou (1975) 

Clearly, the agreement of the numerical estimates, all obtained by different methods, 
with present estimates is excellent. Similarly, the previous numerical estimates for 
triangular lattice, were (approximately) 9.4 by Licciardello and Thouless (1975), and 

6.1 
6.0 
6.5 

28 
14 
34 
7.2 
7 

Analytical estimate of Abou-Chacra et a1 (1974) 

Analytical estimate of Brouers and Kumar (1975) 
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9.5 ( + O S )  by Stein and Krey (1981), which agree well with the present value of 11.5 
(from figure 4). It is hard to judge whether this agreement is coincidental or real. If real, 
it lends strong support to the numerical estimates which are otherwise taken with 
scepticism, especially the results on two-dimensional systems after the Abrahams et a1 
(1979) conjecture. 

Note that it is generally believed that there should exist in the localisation problem 
a marginal dimension at and below which the disordered system should behave like an 
insulator and no metal-insulator transition should occur. That a marginal connectivity 
constant can exist is surprising. This surprising result should be understood and appreci- 
ated in light of the fact that it was obtained from the exact theory worked out for tight- 
binding Hamiltonians, i.e., in the strong disorder limit ( W %  V). The subtle weak 
localisation effects (Bergmann 1984), therefore, can not play a role here. Consequently, 
if the triangular lattice has mobility edges and requires rather high critical disorder to 
merge them into one (the Anderson transition), it seems unlikely that an alternative 
approach worked out in the weak disorder limit should yield more localisation than has 
been found here. Besides working in the strong disorder limit, since we obtain our result 
by mapping the real lattice onto a T-CT in which, by the very nature of its geometry, the 
localisation is difficult, and since our mapping is exact, we believe that the localisation 
in real lattices is more difficult than generally believed following the result of Abrahams 
et a1 (1979). Indeed, the localisation is not as difficult as indicated in the original results 
of Anderson (1958) and AAT (1973). The reasons for the small difference between our 
result and that of Abrahams et a1 (1979) may be the subtle effects discussed by Phillips 
(1983) and the fact that the single-parameter theory of Abrahams eta1 (1979) is not good 
enough for localisation studies (see, e.g., Ioffe et a1 1985). 

7. Conclusion 

We conclude that the old theories of Anderson (1958) and AAT (1973) are still the most 
rigorous ones available for localisation studies. In particular, the self-consistent theory 
of AAT which is exact for the Cayley tree lattice and hitherto believed to give highly 
approximate results for real lattices has been shown here to be extremely good for 
studying localisation in real lattices provided care is taken in isolating those branches in 
the CT that are relevant for a particular real lattice. This is done by mapping the SAWS on 
a real lattice that contribute to the RPS (1 or 2) onto the CT and then trimming off 
unwanted branches. The connectivity constant for a T-CT obtained in this fashion can be 
calculated exactly, and when this is substituted in the AAT theory estimates of the critical 
disorder W, and the mobility edge trajectories, etc. , can be calculated for the real lattice. 
Calculations for two-dimensional lattices reveal the surprising result that the honeycomb 
lattice never has mobility edges, whereas the triangular lattice does seem to have them, 
and the square lattice is a borderline case. 
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